Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Biomed Pharmacother ; 151: 113107, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1850706

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a viral disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a member of the Coronaviridae family. On March 11, 2020 the World Health Organization (WHO) has named the newly emerged rapidly-spreading epidemic as a pandemic. Besides the risk-reduction measures such as physical and social distancing and vaccination, a wide range of treatment modalities have been developed; aiming to fight the disease. The immune system is known as a double-edged sword in COVID-19 pathogenesis, with respect to its role in eliminating the pathogen and in inducing complications such as cytokine storm syndrome. Hence, immune-based therapeutic approaches have become an interesting field of COVID-19 research, including corticosteroids, intravenous immunoglobulins (IVIG), interferon therapy, and more COVID-19-specific approaches such as anti-SARS-CoV-2-monoclonal antibodies. Herein, we did a comprehensive review on immune-based therapeutic approaches for COVID-19. DATA AVAILABILITY STATEMENT: Not applicable.


Subject(s)
COVID-19 , Antibodies, Viral , Cytokine Release Syndrome , Humans , Pandemics , SARS-CoV-2
2.
Rev Neurosci ; 33(7): 721-743, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-1765567

ABSTRACT

The devastating characteristic of COVID-19 pandemic calls for immediate and effective solutions to tackle it. Vaccines seem to be the only promising and effective way to fight against the novel coronavirus - even against new mutated variants. Because of the rapid development and distribution of numerous COVID-19 vaccines in different platforms, meticulous evaluation of vaccines' safety is more critical than ever - especially given the fact that most of the candidates have not completed the clinical phase. Therefore, to optimize the vaccines' safety and efficacy, it is highly important to carefully report and scientifically discuss the serious adverse effects following vaccination. In this respect, we discuss different neurological and neuropsychological adverse effects of COVID-19 vaccines including demyelinating diseases, Bell's palsy (BP), cerebrovascular complications, seizures, functional neurological disorders (FNDs), and some other rare adverse events, and hypothetical mechanisms which can lead to the reported side effects. Given the fact that the incidence of such events are rare and most of them are treatable, the current review aims to shed light on how much the relationship between COVID-19 vaccines and these complications can be reliable and provide an insight for future studies with much more meticulous methodologies to discuss the possible correlational or causal relationship between these complications and COVID-19 vaccines and elucidate whether or not the neurological side effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines can count as a considerable threat to public health.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Pandemics/prevention & control , SARS-CoV-2 , Viral Vaccines/adverse effects
3.
Int J Environ Res Public Health ; 18(22)2021 11 19.
Article in English | MEDLINE | ID: covidwho-1544056

ABSTRACT

Loneliness has been defined as an agonizing encounter, experienced when the need for human intimacy is not met adequately, or when a person's social network does not match their preference, either in number or attributes. This definition helps us realize that the cause of loneliness is not merely being alone, but rather not being in the company we desire. With loneliness being introduced as a measurable, distinct psychological experience, it has been found to be associated with poor health behaviors, heightened stress response, and inadequate physiological repairing activity. With these three major pathways of pathogenesis, loneliness can do much harm; as it impacts both immune and metabolic regulation, altering the levels of inflammatory cytokines, growth factors, acute-phase reactants, chemokines, immunoglobulins, antibody response against viruses and vaccines, and immune cell activity; and affecting stress circuitry, glycemic control, lipid metabolism, body composition, metabolic syndrome, cardiovascular function, cognitive function and mental health, respectively. Taken together, there are too many immunologic and metabolic manifestations associated with the construct of loneliness, and with previous literature showcasing loneliness as a distinct psychological experience and a health determinant, we propose that loneliness, in and of itself, is not just a psychosocial phenomenon. It is also an all-encompassing complex of systemic alterations that occur with it, expanding it into a syndrome of events, linked through a shared network of immunometabolic pathology. This review aims to portray a detailed picture of loneliness as an "immunometabolic syndrome", with its multifaceted pathology.


Subject(s)
Loneliness , Stress, Psychological , Humans , Mental Health , Social Isolation
4.
J Med Virol ; 94(1): 54-62, 2022 01.
Article in English | MEDLINE | ID: covidwho-1370368

ABSTRACT

Coronavirus disease 2019 (COVID-19) is still propagating a year after the start of the pandemic. Besides the complications patients face during the COVID-19 disease period, there is an accumulating body of evidence concerning the late-onset complications of COVID-19, of which autoimmune manifestations have attracted remarkable attention from the first months of the pandemic. Autoimmune hemolytic anemia, immune thrombocytopenic purpura, autoimmune thyroid diseases, Kawasaki disease, Guillain-Barre syndrome, and the detection of autoantibodies are the cues to the discovery of the potential of COVID-19 in inducing autoimmunity. Clarification of the pathophysiology of COVID-19 injuries to the host, whether it is direct viral injury or autoimmunity, could help to develop appropriate treatment.


Subject(s)
Autoimmune Diseases/epidemiology , Autoimmune Diseases/immunology , Autoimmunity/immunology , COVID-19/pathology , SARS-CoV-2/immunology , Autoantibodies/blood , Autoantibodies/immunology , Autoimmune Diseases/virology , COVID-19/immunology , Humans
5.
Expert Rev Anti Infect Ther ; 20(3): 373-381, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1341075

ABSTRACT

INTRODUCTION: Understanding the pathogenesis and risk factors to control the coronavirus disease 2019 (COVID-19) is necessary. Due to the importance of the inflammatory pathways in the pathogenesis of COVID-19 patients, evaluating the effects of anti-inflammatory medications is important. Glucagon-like peptide 1 receptor agonist (GLP-1 RA) is awell-known glucose-lowering agent with anti-inflammatory effects. AREAS COVERED: Resources were extracted from the PubMed database, using keywords such as glucagon-like peptide-1, GLP-1 RA, SARS-CoV-2, COVID-19, inflammation, in April2021. In this review, the effects of GLP-1RA in reducing inflammation and modifying risk factors of COVID-19 severe complications are discussed. However, GLP-1 is degraded by DPP-4 with aplasma half-life of about 2-5 minutes, which makes it difficult to measure GLP-1 plasma level in clinical settings. EXPERT OPINION: Since no definitive treatment is available for COVID-19 so far, determining promising targets to design and/or repurpose effective medications is necessary.


Subject(s)
COVID-19 Drug Treatment , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor/agonists , Anti-Inflammatory Agents/therapeutic use , Glucagon-Like Peptide 1/blood , Humans , SARS-CoV-2
6.
Acta Biomed ; 92(2): e2021102, 2021 05 12.
Article in English | MEDLINE | ID: covidwho-1229609

ABSTRACT

All the countries and regions have already been infected with novel coronavirus disease (COVID-19). This super small guest has paralyzed the economy of the entire world, from the extreme fall of the oil prices to the bankruptcy of the great companies or even the small retail shops. The people's lifestyle is undergoing significant changes, by which it is leaving a negative impact on their psychological and physical health. The atmosphere is filled with dual accusations from each one of the governments and their citizens. Recognizing cognitive biases that have potentially affected decision-making during the COVID-19 pandemic would help in considering some behavioral changes for curbing this global viral infection.


Subject(s)
COVID-19 , Pandemics , Bias , Cognition , Humans , Pandemics/prevention & control , SARS-CoV-2
7.
Adv Exp Med Biol ; 1318: 1-22, 2021.
Article in English | MEDLINE | ID: covidwho-1222704

ABSTRACT

By driving the ongoing pandemic of coronavirus disease 2019 (COVID-19), coronaviruses have become a significant change in twenty-first-century medicine, healthcare systems, education, and the global economy. This chapter rapidly reviews the origin, immunopathogenesis, epidemiology, diagnosis, clinical manifestations, and potential therapeutics of COVID-19. It would also explore the effects of the introduction of a single virus, the so-called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), on the public health preparedness planning.


Subject(s)
COVID-19 , Medicine , Middle East Respiratory Syndrome Coronavirus , Humans , Pandemics , SARS-CoV-2
8.
Bioorg Chem ; 106: 104490, 2021 01.
Article in English | MEDLINE | ID: covidwho-932779

ABSTRACT

BACKGROUND: Since the beginning of the novel coronavirus (SARS-CoV-2) disease outbreak, there has been an increasing interest in finding a potential therapeutic agent for the disease. Considering the matter of time, the computational methods of drug repurposing offer the best chance of selecting one drug from a list of approved drugs for the life-threatening condition of COVID-19. The present systematic review aims to provide an overview of studies that have used computational methods for drug repurposing in COVID-19. METHODS: We undertook a systematic search in five databases and included original articles in English that applied computational methods for drug repurposing in COVID-19. RESULTS: Twenty-one original articles utilizing computational drug methods for COVID-19 drug repurposing were included in the systematic review. Regarding the quality of eligible studies, high-quality items including the use of two or more approved drug databases, analysis of molecular dynamic simulation, multi-target assessment, the use of crystal structure for the generation of the target sequence, and the use of AutoDock Vina combined with other docking tools occurred in about 52%, 38%, 24%, 48%, and 19% of included studies. Studies included repurposed drugs mainly against non-structural proteins of SARS-CoV2: the main 3C-like protease (Lopinavir, Ritonavir, Indinavir, Atazanavir, Nelfinavir, and Clocortolone), RNA-dependent RNA polymerase (Remdesivir and Ribavirin), and the papain-like protease (Mycophenolic acid, Telaprevir, Boceprevir, Grazoprevir, Darunavir, Chloroquine, and Formoterol). The review revealed the best-documented multi-target drugs repurposed by computational methods for COVID-19 therapy as follows: antiviral drugs commonly used to treat AIDS/HIV (Atazanavir, Efavirenz, and Dolutegravir Ritonavir, Raltegravir, and Darunavir, Lopinavir, Saquinavir, Nelfinavir, and Indinavir), HCV (Grazoprevir, Lomibuvir, Asunaprevir, Ribavirin, and Simeprevir), HBV (Entecavir), HSV (Penciclovir), CMV (Ganciclovir), and Ebola (Remdesivir), anticoagulant drug (Dabigatran), and an antifungal drug (Itraconazole). CONCLUSIONS: The present systematic review provides a list of existing drugs that have the potential to influence SARS-CoV2 through different mechanisms of action. For the majority of these drugs, direct clinical evidence on their efficacy for the treatment of COVID-19 is lacking. Future clinical studies examining these drugs might come to conclude, which can be more useful to inhibit COVID-19 progression.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drug Repositioning , SARS-CoV-2/drug effects , Animals , Cell Line, Tumor , Computational Chemistry , Drug Discovery , Humans
9.
Rev Neurosci ; 31(7): 691-701, 2020 10 25.
Article in English | MEDLINE | ID: covidwho-707640

ABSTRACT

Just before 2020 began, a novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), brought for humans a potentially fatal disease known as coronavirus disease 2019 (COVID-19). The world has thoroughly been affected by COVID-19, while there has been little progress towards understanding the pathogenesis of COVID-19. Patients with a severe phenotype of disease and those who died from the disease have shown hyperinflammation and were more likely to develop neurological manifestations, linking the clinical disease with neuroimmunological features. Anosmia frequently occurs early in the course of COVID-19. The prevalence of anosmia would be influenced by self-diagnosis as well as self-misdiagnosis in patients with COVID-19. Despite this, the association between anosmia and COVID-19 has been a hope for research, aiming to understand the pathogenesis of COVID-19. Studies have suggested differently probable mechanisms for the development of anosmia in COVID-19, including olfactory cleft syndrome, postviral anosmia syndrome, cytokine storm, direct damage of olfactory sensory neurons, and impairment of the olfactory perception center in the brain. Thus, the observation of anosmia would direct us to find the pathogenesis of COVID-19 in the central nervous system, and this is consistent with numerous neurological manifestations related to COVID-19. Like other neurotropic viruses, SARS-CoV-2 might be able to enter the central nervous system via the olfactory epithelium and induce innate immune responses at the site of entry. Viral replication in the nonneural olfactory cells indirectly causes damage to the olfactory receptor nerves, and as a consequence, anosmia occurs. Further studies are required to investigate the neuroimmunology of COVID-19 in relation to anosmia.


Subject(s)
Coronavirus Infections/complications , Olfaction Disorders/etiology , Pneumonia, Viral/complications , Animals , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Humans , Immunity, Innate , Olfaction Disorders/immunology , Olfaction Disorders/physiopathology , Olfactory Mucosa/immunology , Olfactory Mucosa/physiopathology , Olfactory Receptor Neurons/physiology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL